

Malassezia Dermatitis

Jeanne B. Budgin, DVM
Diplomate American College of Veterinary Dermatology
Riverdale Veterinary Dermatology
Riverdale, New Jersey USA

Etiology

- Malassezia pachydermatis
 - Lipophilic non-mycelial saprophytic monopolar budding yeast, 2-7 μm
 - Normal inhabitant of skin and mucosa of dogs and cats (perianal ring, ear canal, lips, interdigital skin)
- Also isolated from wild carnivores, herbivores and monkeys; rare in man

Etiology

- M. sympodialis cat, man
- M. globosa cat, dog, man, bovine
- M. furfur man, indian elephant, monkey
- M. slooffiae pig, man, goat, sheep
- M. obtusa and M. restricta man
- Identification is difficult due to the requirement for different lipid sources
- All are lipid-dependent, in contrast to *M.* pachydermatis which is non-lipid-dependent

Epidemiology

- *M. pachydermatis* is a commensal in healthy animals
 - Lives on the surface of corneocytes
 - Excessive colonization and infection is prevented by:
 - Cutaneous desquamation
 - Fungistatic effect of epidermal lipids
 - Specific immunologic defense mechanisms (IgA)

Epidemiology

- Breed predisposition for:
 - Basset hound, WHWT, dachshund, poodle, cocker spaniel, shar pei, shih tzu, Labrador, German shepherd
- May have a symbiotic relationship with commensal *Staphylococci*
- Dogs with *Malassezia* dermatitis often have bacterial overgrowth or pyoderma

Pathogenesis of Disease

- Opportunistic pathogen:
 - Increased colonization and infection when host defense mechanisms (physical, chemical, immunologic) are compromised:
 - · Atopic dermatitis and other allergies
 - Endocrinopathies
 - Cornification disorders
 - Immune suppression (FIV/FeLV), glucocorticoids
 - Conformational effects (skin folds) → increased humidity

Malassezia	Noli et al. 2006	Bond et al. 1996	Plant et al. 1992
Atopic dermatitis	36.9%	35.0%	26.3%
Food allergy	11.5%	15.0%	21.1%
Flea allergy	4.9%		
Hypothyroidism	1.6%	2.5%	-
Testicular tumour	1.6%	-	-
Cushing's disease	1.6%	-	=
Seborrhea oleosa	1.6%	5.0%	4.4%

Pathogenesis

- · Disruption of the stratum corneum
- Mechanical due to pruritus
- Biochemical
 - Humidity, immunologic abnormalities, alteration of skin surface lipids due to keratinization defects and endocrinopathies
 - Enzymes of yeasts and bacteria (esterase, lipase, lipoxigenase, protease, urease)
- •Immune system is exposed to *Malassezia* antigens and products → *Malassezia* dermatitis/hypersensitivity

Pathogenesis: Hypersensitivity Reaction

- High levels of yeast-specific IgE have been found in some atopic dogs
- Atopic dogs with Malassezia infection have stronger intradermal test reactions to Malassezia antigens than atopic dogs without Malassezia dermatitis

Clinical Signs

- Erythema, yellow scale and crust, greasy, malodorous skin, hyperpigmentation, lichenification
- Face, feet, ventral neck, abdomen, interdigital spaces, nail beds, skin folds
- Pruritus (often intense)

Malassezia Dermatitis in Cats

- Much less common vs. dogs
- Little is known about predisposing factors; higher numbers in FIV/FeLV+ cats
- Generalized infection in cats with neoplasia or severe diseases, including allergy
- Paronychia and chin acne
- •Devon rex and sphynx predisposed

Diagnosis

- Evaluate for *Malassezia* with any pruritic dermatitis
- May closely resemble and coexist with allergic disease, pyoderma and disorders of keratinization
- Diagnosis: elevated *Malassezia* population on lesional skin with good clinical and mycological response to antifungal therapy

Histopathology

- Epidermis
- Yeast in the stratum corneum
- Hyperplasia and spongiosis
- Lymphocytic exocytosis
- Dermis
- Perivascular mononuclear infiltrate
- Subepidermal linear alignment of mast cells
- Failure to visualize the yeast does not exclude infection

Diagnosis - Trial Therapy

- Difficult to assess because some antifungal agents have other actions:
 - Ketoconazole has immunomodulatory effect
 - Miconazole/chlorhexidine shampoo has antibacterial activity

Therapy - Topical

- Shampoo
 - Chlorhexidine 4%
 - Ketoconazole, miconazole, climbazole, econazole, selenium sulfide

- Chlorhexidine 2%/miconazole 2%
- 10 minute contact time
- Twice weekly for 1 month then once weekly

Therapy - Topical

- Many preparations
 - Rinse, spray, cream, lotion, mousse
 - Best for localized infection
 - Enilconazole 0.2%
 - Miconazole cream/lotion
 - Clotrimazole cream/lotion
 - Climbazole pads/mousse
 - White vinegar:water (1:3 to 1:1)

Therapy - Oral

- Ketoconazole
 - 5-10 mg/kg q 24 hours with food for 21-30 days
- Fluconazole
 - 5-10 mg/kg q 24 hours with food for 21-30 days
- Itraconazole
 - 5 mg/kg q 24 hours
 - Pulse therapy 2 consecutive days/week
- Terbinafine
 - 20-30 mg/kg q 24 hours
 - Pulse therapy 2 consecutive days/week

Therapy – Follow up

- Re-exam in 3-4 weeks
- Very important to identify and manage underlying disease
- Maintenance therapy beneficial for recurrent infections
 - Once-twice weekly medicated shampoo combined with other topicals
- Pulse therapy

